Title of article :
Evaluating the physical capture method of terminal restriction fragment length polymorphism for comparison of soil microbial communities
Author/Authors :
Blackwood، نويسنده , , Christopher B. and Buyer، نويسنده , , Jeffrey S.، نويسنده ,
Pages :
10
From page :
590
To page :
599
Abstract :
Terminal restriction fragment length polymorphism (T-RFLP) is a popular method of comparative microbial community analysis which is normally accomplished by tagging terminal restriction fragments (T-RFs) with a fluorescent primer. Here, we evaluate an alternative method of T-RFLP where T-RFs are physically captured using a biotinylated primer and streptavidin-coated beads. This eliminates one of the primary criticisms of T-RFLP, namely that T-RFs cannot be identified by sequence analysis, and also represents an alternative method for collecting T-RFLP profiles. Microbial communities from forest, agricultural, and turf soils were investigated using several sets of primers specific for different microbial groups. The physical capture method of T-RFLP resulted in similar profiles to those generated by fluorescent T-RFLP. The relationships among ecosystem types captured by both methods and revealed by ordination were virtually identical. The total variance in the profiles that was attributed to ecosystem type was approximately equal, or greater, when generated by the physical capture method, depending on the primers used. However, physical capture T-RFLP resolved fewer T-RFs than fluorescent T-RFLP, and this may reduce the sensitivity to changes in non-dominant populations within the community. Direct cloning and sequencing of physical capture T-RFs revealed that most bands were not comprised of sequences related to those in the database that would generate T-RFs of similar size. T-RFs should therefore be identified by sequencing, rather than by comparing the sizes of T-RFs to computer digests of database sequences. Physical capture T-RFLP should be a useful tool to identify T-RFs by sequencing, and for laboratories without economical access to equipment required to perform fluorescent T-RFLP.
Keywords :
soil bacteria , Soil fungi , Terminal restriction fragment length polymorphism (T-RFLP) , Soil microorganisms , Molecular community analysis
Journal title :
Astroparticle Physics
Record number :
1996647
Link To Document :
بازگشت