Title of article :
Moisture pulses, trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush-steppe in Wyoming, USA
Author/Authors :
Norton، نويسنده , , U. and Mosier، نويسنده , , A.R. and Morgan، نويسنده , , J.A. and Derner، نويسنده , , J.D. and Ingram، نويسنده , , L.J. and Stahl، نويسنده , , P.D.، نويسنده ,
Pages :
11
From page :
1421
To page :
1431
Abstract :
Effects of large-scale weed invasion on the nature and magnitude of moisture-pulse-driven soil processes in semiarid ecosystems are not clearly understood. The objective of this study was to monitor carbon dioxide (CO2) and nitrous oxide (N2O) emissions and changes in soil carbon (C) and nitrogen (N) following the application of a water pulse in Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) communities dominated by the exotic annual grass cheatgrass (Bromus tectorum) and by the native perennial grass western wheatgrass (Pascopyrum smithii). Sampling locations were established in shrub interspaces dominated by B. tectorum and P. smithi and beneath shrub canopies adjacent to interspaces dominated by B. tectorum and P. smithi, where no grass was present. Soils were classified as fine-loamy, mixed, Borollic Haplargids. Soil samples (0–10 cm) and air samples were collected at 0, 4, 8, 24, 49, 72, and 216 h following additions of 25.4 mm of water. Soil samples were analyzed for dissolved organic carbon (DOC), microbial biomass carbon (MBC), extractable ammonia (NH4+), extractable nitrate (NO3−), and dissolved organic nitrogen (DON). Grass species induced differences in soil nitrification, N2O and CO2 emissions, and the quantity and timing of labile C available to microbial populations responding to increased moisture availability. In the first 8-h phase after wetting P. smithii soils had the greatest CO2 emissions compared to other soils but B. tectorum soils had the greatest N2O emissions and the greatest increases in CO2 emissions relative to before wetting. Microbial biomass C in B. tectorum interspace soils increased rapidly but the response was short-lived despite sufficient water availability. After the first 8 h of soil response to wetting, the observed MBC declines in B. tectorum interspace coincided with disproportional DOC and DON concentration increases. Similar DOC and DON increases were also observed in B. tectorum soils beneath shrub canopy. In contrast, DOC and DON concentrations in P. smithii soils remained unaffected by soil wetting and small MBC increases observed during the first 8-h phase did not decline as rapidly as in B. tectorum interspace soils. In conclusion, summer drying-wetting cycles that occur frequently in areas invaded by B. tectorum can accelerate rates of nitrification and C mineralization, and contribute significantly to trace gas emissions from sagebrush-steppe grasslands. With frequent summer rainfall events, the negative consequences B. tectorum presence in the ecosystem can be significant.
Keywords :
Microbial biomass , Artemisia tridentata , Global change , Carbon dioxide (CO2) , Nitrous oxide (N2O) , dissolved organic carbon (DOC) , Trace gas , Sagebrush-steppe , Pascopyrum smithii , Wyoming big sagebrush , Bromus tectorum
Journal title :
Astroparticle Physics
Record number :
1997374
Link To Document :
بازگشت