Title of article :
Adaptive RBF network control for robot manipulators
Author/Authors :
Fateh، M. M نويسنده Department of Electrical Engineering and Robotics, University of Shahrood, Iran Fateh, M. M , Ahmadi، S. M نويسنده Department of Mechanical Engineering, University of Shahrood, Shahrood, Iran Ahmadi, S.M , Khorashadizadeh، S نويسنده Department of Electrical Engineering, University of Shahrood, Shahrood, Iran Khorashadizadeh, S
Issue Information :
دوفصلنامه با شماره پیاپی 0 سال 2014
Pages :
8
From page :
159
To page :
166
Abstract :
The uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function network (RBF network) as an uncertainty estimator. The proposed network includes a hidden layer with one node, two inputs and a single output. In comparison with other model-free estimators such as multilayer neural networks and fuzzy systems, the proposed estimator is simpler, less computational and more effective. The weights of the RBF network are tuned online using an adaptation law derived by stability analysis. Despite the majority of previous control approaches which are the torque-based control, the proposed control design is the voltage-based control. Simulations and comparisons with a robust neural network control approach show the efficiency of the proposed control approach applied on the articulated robot manipulator driven by permanent magnet DC motors.
Journal title :
Journal of Artificial Intelligence and Data Mining
Serial Year :
2014
Journal title :
Journal of Artificial Intelligence and Data Mining
Record number :
2002146
Link To Document :
بازگشت