Title of article :
Equilibrium theory of molecular fluids: Structure and freezing transitions
Author/Authors :
Ram، نويسنده , , Jokhan، نويسنده ,
Pages :
65
From page :
121
To page :
185
Abstract :
In this article we review equilibrium theory of molecular fluids which includes structure and freezing transitions. The application of the theory to evaluate the pair correlation functions using Integral Equation methods and Computer Simulations have been discussed. Freezing of classical complex fluids based on the density functional approach is also discussed and compare a variety of its versions. Transitions discussed are sensitive to the value of direct correlation functions of the effective liquid which is required as an input information in the theory. Accurate evaluation of pair correlation functions is emphasized. Calculation of these correlation functions which pose problems in the case of ordered phases is discussed. The pair correlation functions of the ordered phase, which are supposed to be made up of two contributions, one that preserves the symmetry of the isotropic phase and a second that breaks it, are discussed. A new free-energy functional developed for an inhomogeneous system that contains both symmetry conserved and symmetry broken parts of the direct pair correlation function is discussed. The most useful three dimensional reference interaction site model (3D-RISM) and its extension done recently by many workers is discussed. Application of this theory to a large variety of complex systems in combination with the density functional theory method implemented in the Amsterdam density functional software package is discussed. Coupling of the 3D-RISM salvation theory with molecular dynamics in the Amber molecular dynamics package is also given. portance of the density functional theory for the study of the structure and phase behaviour of hard polyhedral is also discussed. The dynamical density functional and its generalized form applied for many important class of problems such as binary mixture, anisotropic particles dynamics of freezing and wetting, colloidal samples, particle self diffusion in complex environment, colloidal sedimentation and active self-propelled particles is discussed.
Journal title :
Astroparticle Physics
Record number :
2004408
Link To Document :
بازگشت