Author/Authors :
Woodring، نويسنده , , M. and Souza، نويسنده , , D. and Tipnis، نويسنده , , S. and Waer، نويسنده , , P. and Squillante، نويسنده , , M. and Entine، نويسنده , , G. and Ziock، نويسنده , , K.P.، نويسنده ,
Abstract :
Imaging gamma-ray sources and distributions of low intensity is difficult using current commercially available radiation imagers. Radiation Monitoring Devices, Inc. has carried out the research and development necessary to construct a novel, compact radiation-imaging device, RADCAM, for low-intensity applications. The device consists of a position-sensitive photomultiplier tube (PSPMT) coupled to a CsI(Na) scintillation crystal, which is an excellent candidate for such applications due to its high light output. A tungsten coded-aperture mask, placed in front of the scintillator, creates a gamma-ray intensity pattern across the face of the crystal. The PSPMT detects the resulting scintillation pattern and the analog output signals are captured and converted to digital signals by the RMD PSPMT interface card. The digital data is stored and processed by a portable personal computer. The gamma-ray “shadowgram” is then mathematically decoded to yield the original source image. The pseudo-color radiation-source image is overlaid on a video picture of the same area captured by a high-resolution CCD. The combined image is displayed on screen as an accurate map of radioactive gamma-ray sources in the physical environment. Data acquisition and image display are controlled by the IMager Acquisition and Graphical-user-interface Environment (IMAGE), a Windows-NT program developed for the imager.