Title of article :
An optimization of the FPGA/NIOS adaptive FIR filter using linear prediction to reduce narrow band RFI for the next generation ground-based ultra-high energy cosmic-ray experiment
Author/Authors :
Szadkowski، نويسنده , , Zbigniew and Fraenkel، نويسنده , , E.D. and Glas، نويسنده , , Dariusz and Legumina، نويسنده , , Remigiusz، نويسنده ,
Abstract :
The electromagnetic part of an extensive air shower developing in the atmosphere provides significant information complementary to that obtained by water Cherenkov detectors which are predominantly sensitive to the muonic content of an air shower at ground. The emissions can be observed in the frequency band between 10 and 100 MHz. However, this frequency range is significantly contaminated by narrow-band RFI and other human-made distortions. The Auger Engineering Radio Array currently suppresses the RFI by multiple time-to-frequency domain conversions using an FFT procedure as well as by a set of manually chosen IIR notch filters in the time-domain. An alternative approach developed in this paper is an adaptive FIR filter based on linear prediction (LP). The coefficients for the linear predictor are dynamically refreshed and calculated in the virtual NIOS processor. The radio detector is an autonomous system installed on the Argentinean pampas and supplied from a solar panel. Powerful calculation capacity inside the FPGA is a factor. Power consumption versus the degree of effectiveness of the calculation inside the FPGA is a figure of merit to be minimized. Results show that the RFI contamination can be significantly suppressed by the LP FIR filter for 64 or less stages.
Keywords :
Linear predictor , Radio detection , Levinson recursion , RFI filtering , Geo-synchrotron radiation , FIR
Journal title :
Astroparticle Physics