Title of article
The main linac cavity for Cornellʹs energy recovery linac: Cavity design through horizontal cryomodule prototype test
Author/Authors
Valles، نويسنده , , N. and Liepe، نويسنده , , M. and Furuta، نويسنده , , F. and Gi، نويسنده , , M. and Gonnella، نويسنده , , D. and He، نويسنده , , Y. and Ho، نويسنده , , K. and Hoffstaetter، نويسنده , , G. and Klein، نويسنده , , D.S. and OʹConnell، نويسنده , , T. and Posen، نويسنده , , S. and Quigley، نويسنده , , P. and Sears، نويسنده , , J. R. Stedman، نويسنده , , G.Q. and Tigner، نويسنده , , M. and Veshcherevich، نويسنده , , V.، نويسنده ,
Pages
9
From page
23
To page
31
Abstract
Future particle accelerators will require continuous wave operation of SRF cavities capable of supporting high beam currents. An example of this is the Energy Recovery Linac (ERL) at Cornell University, a next generation light source designed to run high currents (100 mA) with a high bunch repetition rate (1.3 GHz). Obtaining the beam emittance necessary to meet design specification requires strong damping of higher-order modes that can lead to beam breakup. We discuss the optimization and verification of the accelerating cavity. Next we show that an ERL constructed from the optimized cavity geometry – including realistic shape errors – can support beam currents in excess of 300 mA while still maintaining beam stability. A niobium prototype 7-cell cavity was fabricated and tested in a horizontal cryomodule. We show that the prototype cavity exceeds quality factor and gradient specifications of 2 × 10 10 at 16.2 MV/m at 1.8 K by 50%, reaching Q = ( 3.0 ± 0.3 ) × 10 10 . The prototype cavity also satisfies all design constraints and has a higher order mode spectrum consistent with the optimized shape geometry. At 1.6 K, the cavity set a record for quality factor of a multicell cavity installed in a horizontal cryomodule reaching Q = ( 6.1 ± 0.6 ) × 10 10 .
Keywords
Cavity design , SRF , Energy recovery linac
Journal title
Astroparticle Physics
Record number
2010739
Link To Document