Author/Authors :
Parazzoli، نويسنده , , Claudio G. and Koltenbah، نويسنده , , Benjamin E.C.، نويسنده ,
Abstract :
In this paper we present the complete numerical simulation of the 1 kW visible Free Electron Laser under construction in Seattle. We show that the goal of producing 1.0 kW at 0.7 μm is well within the hardware capabilities. We simulate in detail the evolution of the electron bunch phase space in the entire e-beam line. The e-beam line includes the photo-injector cavities, the 433.33 MHz accelerator, the magnetic buncher, the 1300 MHz accelerator, the 180° bend and the matching optics into the wiggler. The computed phase space is input for a three-dimensional time-dependent code that predicts the FEL performance. All the computations are based on state of the art software, and the limitations of the current software are discussed. We believe that this is the first time that such a thorough numerical simulation has been carried out and that such a realistic electron phase space has been used in FEL performance calculations.