Title of article :
Bimorph mirrors: The Good, the Bad, and the Ugly
Author/Authors :
Alcock، نويسنده , , Simon G. and Sutter، نويسنده , , John P. and Sawhney، نويسنده , , Kawal J.S. and Hall، نويسنده , , David R. and McAuley، نويسنده , , Katherine and Sorensen، نويسنده , , Thomas، نويسنده ,
Pages :
6
From page :
87
To page :
92
Abstract :
Bimorph mirrors are widely used by the X-ray, Laser, Space, and Astronomy communities to focus or collimate photon beams. Applying voltages to the embedded piezo ceramics enables the user to globally bend the optical substrate to a range of figures (including cylindrical, parabolic, and elliptical), and finely correct low spatial frequency errors, thus improving optical performance. Bimorph mirrors are employed on numerous synchrotron X-ray beamlines, including several at Diamond Light Source. However, many such beamlines were not achieving the desired size and shape of the reflected X-ray beam. Metrology data from ex-situ, slope measuring profilometry (using the Diamond-NOM) and in-situ, synchrotron X-ray “pencil-beam” scans, revealed sharp defects on the optical substrate directly above the locations at which the piezo ceramics are bonded together. This so-called “junction effect” has been observed on a variety of bimorph mirrors with different numbers of piezos, substrate length, and thickness. To repair this damage, three pairs of bimorph mirrors were re-polished at Thales-SESO. We review the re-polishing process, and show that it successfully removed the junction effect, and significantly improved beamline performance. Since the internal structure of the bimorph mirrors was not modified during re-polishing, it is hoped that the mirrors will retain their surface quality, and remain operational for many years. We also highlight the combination of super-polishing techniques with bimorph technology to create the “Ultimate” mirror, and discuss a next generation, bimorph mirror which is predicted not to suffer from the junction effect.
Keywords :
Piezo bimorph mirrors , Junction effect , Active optics , Synchrotron mirrors , Diamond-NOM , Nano-metrology
Journal title :
Astroparticle Physics
Record number :
2012919
Link To Document :
بازگشت