Title of article
Scintillating fiber camera for neutron dosimetry in spacecraft
Author/Authors
Terasawa، نويسنده , , K and Doke، نويسنده , , T and Hasebe، نويسنده , , N and Kikuchi، نويسنده , , J and Kudo، نويسنده , , K and Murakami، نويسنده , , T and Takeda، نويسنده , , N and Tamura، نويسنده , , T and Torii، نويسنده , , S and Yamashita، نويسنده , , M and Yoshihira، نويسنده , , E، نويسنده ,
Pages
10
From page
499
To page
508
Abstract
A scintillating fiber camera for three-dimensional imaging was newly developed for radiation dosimetry in spacecraft. The camera consists of a scintillating fiber stack, an image intensifier unit and photomultipliers for triggering events. The scintillating fiber stack has 100 scintillating fiber layers. The layers are alternatively stacked up to be perpendicular to each other. The stack is coupled to a two-stage image intensifier and then coupled to a CCD camera for the track readout. Each fiber layer consists of 100 scintillating fibers and the fiber stack composed of 100 layers leads us to a sensitive volume of 50×50×50 mm3. Each fiber has a cross-section of 0.5×0.5 mm2. It is found that the camera has the capability to clearly identify charged particles, neutrons and γ-rays by observing individual three-dimensional images of those tracks. The threshold energy for identification of neutrons and γ-rays is 5–10 MeV for recoil proton energy when the coincidence signals from 2 photomultipliers are used as triggers and is expected to be 2–3 MeV when the triggers from either photomultiplier are used. The whole energy region for neutron dosimetry will be covered by the combination with the Bonner spheres for the energy region lower than ∼10 MeV.
Keywords
neutron dosimetry , three-dimensional imaging , Particle trajectory , Image intensifier , Scintillating fiber
Journal title
Astroparticle Physics
Record number
2013913
Link To Document