Title of article
Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector
Author/Authors
Riggi، نويسنده , , S. and Antonuccio-Delogu، نويسنده , , V. and Bandieramonte، نويسنده , , M. and Becciani، نويسنده , , Marيa U. and Costa، نويسنده , , A. and La Rocca، نويسنده , , P. and Massimino، نويسنده , , P. and Petta، نويسنده , , C. and Pistagna، نويسنده , , C. and Riggi، نويسنده , , F. L. Sciacca، نويسنده , , E. and Vitello، نويسنده , , F.، نويسنده ,
Pages
10
From page
59
To page
68
Abstract
Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are discussed here. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full Geant4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.
Keywords
Muon tomography , Imaging algorithms , Clustering methods , Autocorrelation analysis , Maximum likelihood , EM algorithm
Journal title
Astroparticle Physics
Record number
2014319
Link To Document