Title of article :
Neutronic calculations for a final focus system
Author/Authors :
Mainardi، نويسنده , , Margherita Premuda، نويسنده , , F and Lee، نويسنده , , E، نويسنده ,
Pages :
6
From page :
410
To page :
415
Abstract :
For heavy-ion fusion and for “liquid-protected” reactor designs such as HYLIFE-II (Moir et al., Fusion Technol. 25 (1994); HYLIFE-II-Progress Report, UCID-21816, 4-82-100), a mixture of molten salts made of F10, Li6, Li7, Be9 called flibe allows highly compact target chambers. Smaller chambers will have lower costs and will allow the final-focus magnets to be closer to the target with decreased size of the focus spot and of the driver, as well as drastically reduced costs of IFE electricity. Consequently the superconducting coils of the magnets closer to the chamber will suffer higher radiation damage though they can stand only a certain amount of energy deposited before quenching. The scope of our calculations is essentially the total energy deposited on the magnetic lens system by fusion neutrons and induced γ-rays. Such a study is important for the design of the final focus system itself from the neutronic point of view and indicates some guidelines for a design with six magnets in the beam line. The entire chamber consists of 192 beam lines to provide access of heavy ions that will implode the pellet. transport calculation of the radiation penetrating through ducts that takes into account the complexity of the system, requires Monte Carlo methods. The development of efficient and precise models for geometric representation and nuclear analysis is necessary. The parameters are optimized thanks to an accurate analysis of six geometrical models that are developed starting from the simplest. Different configurations are examined employing TART 98 (D.E. Cullen, Lawrence Livermore National Laboratory, UCRL-ID-126455, Rev. 1, November, 1997) and MCNP 4B (Briesmeister (Ed.), Version 4B, La-12625-m, March 1997, Los Alamos National Laboratory): two Monte Carlo codes for neutrons and photons. The quantities analyzed include: energy deposited by neutrons and gamma photons, values of the total fluence integrated on the whole energy range, neutron fluence spectrum, total path length of neutrons in energy, neutron mean free path versus energy. The results of the two codes turned out to be in good agreement with each other for different zones and configurations of the system. The source restriction technique gives reliable results as it is proved comparing re-normalized results with results obtained with a 4π source and with sources emitting with different set of solid angles. For this reason, this technique is used in all the six models avoiding other variance reduction techniques. Finally, solutions are suggested for optimizing the system from the neutronic point of view, with respect to both relative position of the magnets and choice of shielding materials.
Keywords :
Heavy-ion inertial fusion energy , Models for Monte Carlo neutronic calculations , Heavy-ion final focus systems , Energy deposited by neutrons and photons
Journal title :
Astroparticle Physics
Record number :
2015039
Link To Document :
بازگشت