Title of article
Operation of the CMS silicon strip tracker
Author/Authors
Yuri، نويسنده , , Gotra، نويسنده ,
Pages
4
From page
680
To page
683
Abstract
The CMS Silicon Strip Tracker (SST), comprising 9.6 million readout channels from 15148 modules covering an area of about 200 m², needs to be precisely calibrated in order to correctly interpret and reconstruct the events recorded from the detector, ensuring that the SST performance fully meets the physics research program of the CMS experiment. Calibration constants may be derived from promptly reconstructed events as well as from pedestal runs gathered just before the acquisition of physics runs. These calibration procedures were exercised in summer and winter 2009, when the CMS detector was commissioned using cosmic muons and proton–proton collisions at a center-of-mass energies of 900 GeV and 2.36 TeV. During these data taking periods the performance of the SST was carefully studied: the noise of the detector, the data integrity, the signal-to-noise ratio, the hit reconstruction efficiency, the calibration workflows have been all checked for stability and for different conditions, at the module level. The calibration procedures and the detector performance results from recent physics runs are described.
Keywords
Silicon detectors , Calibration , Lorentz angle , ALIGNMENT , Tracking
Journal title
Astroparticle Physics
Record number
2017738
Link To Document