Title of article :
Self-masking noise subtraction (SMNS) in digital X-ray tomosynthesis for the improvement of tomographic image quality
Author/Authors :
Oh، نويسنده , , J.E. and Cho، نويسنده , , H.S and Choi، نويسنده , , S.I. and Park، نويسنده , , Y.O. and Lee، نويسنده , , M.S. and Cho، نويسنده , , H.M. and Yang، نويسنده , , Y.J. and Je، نويسنده , , U.K. and Woo، نويسنده , , T.H. and Lee، نويسنده , , H.K.، نويسنده ,
Pages :
5
From page :
708
To page :
712
Abstract :
In this paper, we proposed a simple and effective reconstruction algorithm, the so-called self-masking noise subtraction (SMNS), in digital X-ray tomosynthesis to reduce the tomographic blur that is inherent in the conventional tomosynthesis based upon the shift-and-add (SAA) method. Using the SAA and the SMNS algorithms, we investigated the influence of tomographic parameters such as tomographic angle (θ) and angle step (Δθ) on the image quality, measuring the signal-difference-to-noise ratio (SDNR). Our simulation results show that the proposed algorithm seems to be efficient in reducing the tomographic blur and, thus, improving image sharpness. We expect the simulation results to be useful for the optimal design of a digital X-ray tomosynthesis system for our ongoing application of nondestructive testing (NDT).
Keywords :
Shift-and-add (SAA) , Image blur , Digital X-ray tomosynthesis , Self-masking noise subtraction (SMNS)
Journal title :
Astroparticle Physics
Record number :
2017751
Link To Document :
بازگشت