• Title of article

    Estimating a signal in the presence of an unknown background

  • Author/Authors

    Rolke، نويسنده , , Wolfgang A. and Lَpez، نويسنده , , Angel M.، نويسنده ,

  • Pages
    6
  • From page
    16
  • To page
    21
  • Abstract
    We describe a method for fitting distributions to data which only requires knowledge of the parametric form of either the signal or the background but not both. The unknown distribution is fit using a nonparametric kernel density estimator. A transformation is used to avoid a problem at the data boundaries. The method returns parameter estimates as well as errors on those estimates. Simulation studies show that these estimates are unbiased and that the errors are correct.
  • Keywords
    Maximum likelihood , coverage , Monte Carlo , Transformations , Bootstrap
  • Journal title
    Astroparticle Physics
  • Record number

    2019519