Author/Authors :
Rovni، نويسنده , , Istvلn and Szieberth، نويسنده , , Mلté and Fehér، نويسنده , , Sلndor، نويسنده ,
Abstract :
In this work, a new passive technique has been developed for measuring the tritium production rate in ITER (International Thermonuclear Experimental Reactor) test blanket modules. This method is based on the secondary charged particle activation, in which the irradiated sample contains two main components: a tritium producing target (6Li or 7Li) and an indicator nuclide, which has a relatively high cross-section for an incoming tritium particle (triton). During the neutron irradiation, the target produces a triton, which has sufficiently high energy to cause the so-called secondary charged particle activation on an indicator nuclide. If the product of this reaction is a radioactive nuclide, its activity must be proportional to the amount of generated tritium. A comprehensive set of irradiations were performed at the Training Reactor of the Budapest University of Technology and Economics. The following charged particle reactions were observed and investigated: 27Al(t,p)29Al; 26Mg(t,p)28Mg; 26Mg(t,n)28Al; 32S(t,n)34mCl; 16O(t,n)18F; and O ( t , α ) 18 N 17 . The optimal atomic ratio of the indicator elements and 6Li was also investigated. The reaction rates were estimated using calculations with the MCNPX Monte Carlo particle transport code. The trend of the measured and the simulated data are in good agreement, although accurate data for triton induced reaction cross-sections cannot be found in the literature. Once the technique is calibrated with a reference LSC (Liquid Scintillation Counting) measurement, a new passive method becomes available for tritium production rate measurements.
Keywords :
MCNPX , Charged particle , TPR measurement , EUROBREED , activation