Title of article
The data acquisition and transport design for NEMO Phase 2
Author/Authors
Simeone، نويسنده , , Francesco، نويسنده ,
Pages
4
From page
254
To page
257
Abstract
Many high energy physics experiments (Auger, IceCube, NEMO, Km3Net) currently taking data or planned in the near future consist of big and sparse detectors that acquire a huge amount of data. This kind of topology requires the ability to acquire physics information in different places of the detector and correlate them using the occurrence time, usually with a sub-ns precision. The architecture described here provides a real-time data transport layer, used to implement the data acquisition system for the NEMO experiment, and consists of a synchronous link with fixed and deterministic latency. The system clock, distributed at every level of the apparatus, has been derived by the signals provided by a GPS receiver during the operating configuration. The aim of this contribution is to give an overview of the NEMO electronic system: the underwater electronics sample signals from photomultipliers and acquires slow-control data from both oceanographic instruments and dedicated sensors, allowing to monitor the operational conditions of the apparatus. The whole data are sent to the laboratory through a fully bi-directional fiber optic link. On-shore the data are received by dedicated boards that distribute them to the first-level trigger and to the slow-control system. A description of the different stages of data acquisition and transport will be given.
Keywords
Neutrinos , Underwater telescope , DWDM , Synchronous link , Fixed latency
Journal title
Astroparticle Physics
Record number
2019831
Link To Document