• Title of article

    Object oriented software for simulation and reconstruction of big alignment systems

  • Author/Authors

    Arce، نويسنده , , P، نويسنده ,

  • Pages
    3
  • From page
    696
  • To page
    698
  • Abstract
    Modern high-energy physics experiments require tracking detectors to provide high precision under difficult working conditions (high magnetic field, gravity loads and temperature gradients). This is the reason why several of them are deciding to implement optical alignment systems to monitor the displacement of tracking elements in operation. To simulate and reconstruct optical alignment systems a general purpose software, named COCOA, has been developed, using the object oriented paradigm and software engineering techniques. Thanks to the big flexibility in its design, COCOA is able to reconstruct any optical system made of a combination of the following objects: laser, x-hair laser, incoherent source—pinhole, lens, mirror, plate splitter, cube splitter, optical square, rhomboid prism, 2D sensor, 1D sensor, distance-meter, tilt-meter, user-defined. COCOA was designed to satisfy the requirements of the CMS alignment system, which has several thousands of components. Sparse matrix techniques had been investigated for solving non-linear least squares fits with such a big number of parameters. The soundness of COCOA has already been stressed in the reconstruction of the data of a full simulation of a quarter plane of the CMS muon alignment system, which implied solving a system of 900 equations with 850 unknown parameters. Full simulation of the whole CMS alignment system, with over 30,000 parameters, is quite advanced. The integration of COCOA in the CMS software framework is also under progress.
  • Keywords
    CMS experiment , Object-oriented software , Optical alignment
  • Journal title
    Astroparticle Physics
  • Record number

    2021424