• Title of article

    Methods for multidimensional event classification: a case study using images from a Cherenkov gamma-ray telescope

  • Author/Authors

    Bock، نويسنده , , R.K. and Chilingarian، نويسنده , , A. and Gaug، نويسنده , , M. and Hakl، نويسنده , , F. and Hengstebeck، نويسنده , , T. and Ji?ina، نويسنده , , M. and Klaschka، نويسنده , , J. and Kotr?، نويسنده , , E. and Savick?، نويسنده , , P. and Towers، نويسنده , , S. and Vaiciulis، نويسنده , , A. and Wittek، نويسنده , , W.، نويسنده ,

  • Pages
    18
  • From page
    511
  • To page
    528
  • Abstract
    We present results from a case study comparing different multivariate classification methods. The input is a set of Monte Carlo data, generated and approximately triggered and pre-processed for an imaging gamma-ray Cherenkov telescope. Such data belong to two classes, originating either from incident gamma rays or caused by hadronic showers. There is only a weak discrimination between signal (gamma) and background (hadrons), making the data an excellent proving ground for classification techniques. ta and methods are described, and a comparison of the results is made. Several methods give results comparable in quality within small fluctuations, suggesting that they perform at or close to the Bayesian limit of achievable separation. Other methods give clearly inferior or inconclusive results. Some problems that this study can not address are also discussed.
  • Keywords
    Classification , Discrimination , NEURAL NETWORKS , Kernel methods , Nearest-neighbour , Regression trees , MULTIVARIATE
  • Journal title
    Astroparticle Physics
  • Record number

    2022173