Title of article
Methods for multidimensional event classification: a case study using images from a Cherenkov gamma-ray telescope
Author/Authors
Bock، نويسنده , , R.K. and Chilingarian، نويسنده , , A. and Gaug، نويسنده , , M. and Hakl، نويسنده , , F. and Hengstebeck، نويسنده , , T. and Ji?ina، نويسنده , , M. and Klaschka، نويسنده , , J. and Kotr?، نويسنده , , E. and Savick?، نويسنده , , P. and Towers، نويسنده , , S. and Vaiciulis، نويسنده , , A. and Wittek، نويسنده , , W.، نويسنده ,
Pages
18
From page
511
To page
528
Abstract
We present results from a case study comparing different multivariate classification methods. The input is a set of Monte Carlo data, generated and approximately triggered and pre-processed for an imaging gamma-ray Cherenkov telescope. Such data belong to two classes, originating either from incident gamma rays or caused by hadronic showers. There is only a weak discrimination between signal (gamma) and background (hadrons), making the data an excellent proving ground for classification techniques.
ta and methods are described, and a comparison of the results is made. Several methods give results comparable in quality within small fluctuations, suggesting that they perform at or close to the Bayesian limit of achievable separation. Other methods give clearly inferior or inconclusive results. Some problems that this study can not address are also discussed.
Keywords
Classification , Discrimination , NEURAL NETWORKS , Kernel methods , Nearest-neighbour , Regression trees , MULTIVARIATE
Journal title
Astroparticle Physics
Record number
2022173
Link To Document