Title of article :
Methods for multidimensional event classification: a case study using images from a Cherenkov gamma-ray telescope
Author/Authors :
Bock، نويسنده , , R.K. and Chilingarian، نويسنده , , A. and Gaug، نويسنده , , M. and Hakl، نويسنده , , F. and Hengstebeck، نويسنده , , T. and Ji?ina، نويسنده , , M. and Klaschka، نويسنده , , J. and Kotr?، نويسنده , , E. and Savick?، نويسنده , , P. and Towers، نويسنده , , S. and Vaiciulis، نويسنده , , A. and Wittek، نويسنده , , W.، نويسنده ,
Pages :
18
From page :
511
To page :
528
Abstract :
We present results from a case study comparing different multivariate classification methods. The input is a set of Monte Carlo data, generated and approximately triggered and pre-processed for an imaging gamma-ray Cherenkov telescope. Such data belong to two classes, originating either from incident gamma rays or caused by hadronic showers. There is only a weak discrimination between signal (gamma) and background (hadrons), making the data an excellent proving ground for classification techniques. ta and methods are described, and a comparison of the results is made. Several methods give results comparable in quality within small fluctuations, suggesting that they perform at or close to the Bayesian limit of achievable separation. Other methods give clearly inferior or inconclusive results. Some problems that this study can not address are also discussed.
Keywords :
Classification , Discrimination , NEURAL NETWORKS , Kernel methods , Nearest-neighbour , Regression trees , MULTIVARIATE
Journal title :
Astroparticle Physics
Record number :
2022173
Link To Document :
بازگشت