Author/Authors :
Zink، نويسنده , , B.L and Irwin، نويسنده , , K.D and Hilton، نويسنده , , G.C and Pappas، نويسنده , , D.P and Ullom، نويسنده , , J.N and Huber، نويسنده , , M.E، نويسنده ,
Abstract :
We describe the design, fabrication and performance of a fully lithographically patterned magnetic microcalorimeter X-ray detector. The detector is fabricated on the same chip as a low-noise SQUID that measures the change in the magnetic sensor filmʹs magnetization as the film is heated by absorbed X-rays. Our proof-of-principle detectors use a 100 μm×100 μm–2 μm paramagnetic Au:Er film coupled to a low-noise on-chip SQUID via a meandering superconducting pickup loop that also provides the magnetic field bias to the film. Absorption of 6 keV X-rays in the film causes heating on the order of 1 mK with a decay time of 1 ms or less, the fastest reported using a magnetic calorimeter. However, the resolution is currently poor due to poor Au:Er film properties and non-optimized coupling to the SQUID. We describe the design and fabrication of this device and present measurements of the heat capacity, decay time constant and effective thermal conductance of the microcalorimeter as a function of temperature. Because the SQUID and calorimeter are lithographically patterned on the same substrate, this technology can be readily applied to the fabrication of arrays of multiplexed magnetic microcalorimeter detectors.