Title of article
COMPACT HYPERSURFACES IN EUCLIDEAN SPACE AND SOME INEQUALITIES
Author/Authors
BEKTAS، M نويسنده Department of Mathematics, F?rat University, 23119 Elazig, Turkey , , ERGUT، M نويسنده Department of Mathematics, F?rat University, 23119 Elazig, Turkey ,
Issue Information
دوفصلنامه با شماره پیاپی 0 سال 2006
Pages
5
From page
285
To page
289
Abstract
Let (M,g ) be a compact immersed hypersurface of (Rn+1, < , > ) , ?1 the first nonzero
eigenvalue, ? the mean curvature, ? the support function, A the shape operator, vol (M ) the volume of M,
and S the scalar curvature of M. In this paper, we established some eigenvalue inequalities and proved the
above.
1) 1 2 2 2 2
M M
A dv dv
n
? ? ? ? ? ? ,
2)
( )
2 2 1 2
M 1 M
dv S dv
n n
? ? ? ?
? ? ? ,
3) If the scalar curvature S and the first nonzero eigenvalue ?1 satisfy S = ?1 (n ?1) , then
[ ] 2 1 2 0
M
dv
n
? ? ? ? ? ? ,
4) Suppose that the Ricci curvature of M is bounded below by a positive constant k. Thus
( )
2 2 2 ( )
M 1 M
dv k gradf dv vol M
n n
? ? ? +
? ? ? ,
5) Suppose that the Ricci curvature is bounded and the scalar curvature satisfy S = ?1 (n ?1) and L=k-
2S > 0 is a constant. Thus
( ) 1 2 2 2 2 .
M M
vol M k dv S dv
L L
? ? ? ? ? ?? ? ? ? ?
Journal title
Iranian Journal of Science and Technology Transaction A: Science
Serial Year
2006
Journal title
Iranian Journal of Science and Technology Transaction A: Science
Record number
2037672
Link To Document