Title of article :
Electrocardiogram Based Identification using a New Effective Intelligent Selection of Fused Features
Author/Authors :
Abbaspour، Hamidreza نويسنده Department of Electronics, Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran , , Razavi، Seyyed Mohammad نويسنده Deptment of Electronic Engineering, Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran Razavi, Seyyed Mohammad , Mehrshad، Nasser نويسنده Department of Electrical Engineering, Birjand University, Birjand, Iran ,
Issue Information :
فصلنامه با شماره پیاپی سال 2015
Abstract :
Over the years, the feasibility of using Electrocardiogram (ECG) signal for human identification issue has been investigated, and
some methods have been suggested. In this research, a new effective intelligent feature selection method from ECG signals has
been proposed. This method is developed in such a way that it is able to select important features that are necessary for identification
using analysis of the ECG signals. For this purpose, after ECG signal preprocessing, its characterizing features were extracted and
then compressed using the cosine transform. The more effective features in the identification, among the characterizing features, are
selected using a combination of the genetic algorithm and artificial neural networks. The proposed method was tested on three public
ECG databases, namely, MIT BIH Arrhythmias Database, MITBIH Normal Sinus Rhythm Database and The European ST T Database,
in order to evaluate the proposed subject identification method on normal ECG signals as well as ECG signals with arrhythmias.
Identification rates of 99.89% and 99.84% and 99.99% are obtained for these databases respectively. The proposed algorithm exhibits
remarkable identification accuracies not only with normal ECG signals, but also in the presence of various arrhythmias. Simulation
results showed that the proposed method despite the low number of selected features has a high performance in identification task.
Journal title :
Journal of Medical Signals and Sensors (JMSS)
Journal title :
Journal of Medical Signals and Sensors (JMSS)