Title of article
In situ effects of restorative materials on dental biofilm and enamel demineralisation
Author/Authors
Sousa، نويسنده , , R.P. and Zanin، نويسنده , , I.C.J. and Lima، نويسنده , , J.P.M. and Vasconcelos، نويسنده , , S.M.L.C. and Melo، نويسنده , , M.A.S. and Beltrمo، نويسنده , , H.C.P. and Rodrigues، نويسنده , , L.K.A.، نويسنده ,
Pages
8
From page
44
To page
51
Abstract
Objectives
secondary caries is one of the main reasons for replacing restorations, this study assessed the effects of different restorative materials on the microbiological composition of dental biofilm and on enamel demineralisation around the restoration.
s
omized, double-blind, split-mouth in situ design was conducted in one phase of 14 days, during which, 20 volunteers wore palatal devices containing five human dental enamel slabs. Each slab was randomly restored with one of the following materials: Filtek-Z-250/Single Bond, control group (composite resin), Permite (amalgam), Fuji II (encapsulated resin-modified glass ionomer), Vitremer (resin-modified glass ionomer) and Ketac Molar (conventional glass ionomer). The volunteers used fluoride dentifrice, 3×/day and a 20% sucrose solution was dripped onto the slabs 8×/day. The biofilm formed on the slabs was analyzed to determine the counts of total streptococci, mutans streptococci and lactobacilli. Enamel demineralisation was determined by cross-sectional microhardness (CSMH) at 20 and 70 μm from the margin of the restoration. Kruskal–Wallis and analysis of variance, followed by least mean squares (LMS) test, were used to evaluate microbiota and CSMH among the groups. The significance level used was 5%.
s
tistically significant differences were found in the cariogenic microbiota grown on the slabs. At a 20-μm distance, only Fuji II statistically differed from the other groups, showing the lowest demineralisation. At 70 μm, Fuji II significantly inhibited demineralisation when compared to Permite, Filtek-Z-250 and Ketac Molar.
sions
context of fluoride dentifrice and under the cariogenic exposure conditions of this study, only the encapsulated resin-modified glass ionomer material provided additional protection against secondary caries.
Keywords
AMALGAM , Resin , Glass ionomer , Secondary caries , Caries prevention
Journal title
Astroparticle Physics
Record number
2038271
Link To Document