Title of article :
The effect of increasing sodium fluoride concentrations on erosion and attrition of enamel and dentine in vitro
Author/Authors :
Austin، نويسنده , , R.S. and Rodriguez، نويسنده , , J.M. and Dunne، نويسنده , , S. and Moazzez، نويسنده , , R. and Bartlett، نويسنده , , D.W.، نويسنده ,
Pages :
6
From page :
782
To page :
787
Abstract :
Objectives estigate the effect of an aqueous sodium fluoride solution of increasing concentration on erosion and attrition of enamel and dentine in vitro. s and dentine sections from caries-free human third molars were polished flat and taped (exposing a 3 mm × 3 mm area) before being randomly allocated to 1 of 5 groups per substrate (n = 10/gp): G1 (distilled water control); G2 (225 ppm NaF); G3 (1450 ppm NaF); G4 (5000 ppm NaF); G5 (19,000 ppm NaF). All specimens were subjected to 5, 10 and 15 cycles of experimental wear [1 cycle = artificial saliva (2 h, pH 7.0) + erosion (0.3% citric acid, pH 3.2, 5 min) + fluoride/control (5 min) + attrition (60 linear strokes in artificial saliva from enamel antagonists loaded to 300 g)]. Following tape removal, step height (SH) in μm was measured using optical profilometry. s he number of cycles increased the amount of tooth surface loss increased significantly in enamel and dentine after attrition and erosion and for dentine after attrition. Attrition and erosion resulted in greater surface loss than attrition alone after 15 cycles of experimental wear of enamel. 5000 ppm and 19,000 ppm sodium fluoride solutions had a protective effect on erosive and attritional enamel tooth wear in vitro, however no other groups showed significant differences. sions re intensive the fluoride regime the more protection was afforded to enamel from attrition and erosion. However, in this study no such protective effect was demonstrated for dentine.
Keywords :
Remineralisation , Measurement , fluoride , Attrition , Tooth wear , Profilometry , Demineralisation , erosion
Journal title :
Astroparticle Physics
Record number :
2038877
Link To Document :
بازگشت