• Title of article

    Design-free estimation of variance matrices

  • Author/Authors

    Abadir، نويسنده , , Karim M. and Distaso، نويسنده , , Walter and ?ike?، نويسنده , , Filip، نويسنده ,

  • Pages
    16
  • From page
    165
  • To page
    180
  • Abstract
    This paper introduces a new method for estimating variance matrices. Starting from the orthogonal decomposition of the sample variance matrix, we exploit the fact that orthogonal matrices are never ill-conditioned and therefore focus on improving the estimation of the eigenvalues. We estimate the eigenvectors from just a fraction of the data, then use them to transform the data into approximately orthogonal series that deliver a well-conditioned estimator (by construction), even when there are fewer observations than dimensions. We also show that our estimator has lower error norms than the traditional one. Our estimator is design-free: we make no assumptions on the distribution of the random sample or on any parametric structure the variance matrix may have. Simulations confirm our theoretical results and they also show that our simple estimator does very well in comparison with other existing methods.
  • Keywords
    Variance matrices , Ill-conditioning , Mean squared error , U -statistics , resampling , Mean absolute deviations
  • Journal title
    Astroparticle Physics
  • Record number

    2042104