Title of article :
Hard probes of short-range nucleon–nucleon correlations
Author/Authors :
Arrington، نويسنده , , J. and Higinbotham، نويسنده , , D.W. and Rosner، نويسنده , , G. and Sargsian، نويسنده , , M.، نويسنده ,
Abstract :
One of the primary goals of nuclear physics is providing a complete description of the structure of atomic nuclei. While mean-field calculations provide detailed information on the nuclear shell structure for a wide range of nuclei, they do not capture the complete structure of nuclei, in particular the impact of small, dense structures in nuclei. The strong, short-range component of the nucleon–nucleon potential yields hard interactions between nucleons which are close together, generating a high-momentum tail to the nucleon momentum distribution, with momenta well in excess of the Fermi momentum. This high-momentum component of the nuclear wave-function is one of the most poorly understood parts of nuclear structure.
ing high-energy probes, we can isolate scattering from high-momentum nucleons, and use these measurements to examine the structure and impact of short-range nucleon–nucleon correlations. Over the last decade we have moved from looking for evidence of such short-range structures to mapping out their strength in nuclei and examining their isospin structure. This has been made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.
Keywords :
Nucleon–nucleon correlations , Tensor correlations , Short-range correlations
Journal title :
Astroparticle Physics