Title of article :
Parameters identification of nonlinear state space model of synchronous generator
Author/Authors :
Kou، نويسنده , , Pangao and Zhou، نويسنده , , Jianzhong and Wang، نويسنده , , Changqing and Xiao، نويسنده , , Han and Zhang، نويسنده , , Huifeng and Li، نويسنده , , Chaoshun and Zhou، نويسنده ,
Abstract :
Synchronous generator (SG) modeling plays an important role in system planning, operation and post-disturbance analysis. This paper presents an improved algorithm named Particle Swarm Optimization with Quantum Operation (PSO–QO) to solve both offline and online parameters estimation problem for SG. First, the hybrid algorithm is proposed to increase the convergence speed and identification accuracy of the basic Particle Swarm Optimization (PSO). An illustrative example for parameters identification of SG is provided to confirm the validity, as compared with Linearly Decreasing Inertia Weight PSO (LDW-PSO), and the Quantum Particle Swarm Optimization (QPSO) in terms of parameter estimation accuracy and convergence speed. Second, PSO–QO is also improved to detect and determine parameters variation. In this case, a sentry particle is introduced to detect any changes in system parameters. Simulation results confirm that the proposed algorithm is a viable alternative for online parameters detection and parameters identification of SG.
Keywords :
Parameters identification , Synchronous Generator , State space model , Particle swarm optimization with quantum operation
Journal title :
Astroparticle Physics