Title of article
Fault detection and diagnosis in synchronous motors using hidden Markov model-based semi-nonparametric approach
Author/Authors
Geramifard، نويسنده , , Omid and Xu، نويسنده , , Jian-Xin and Kumar Panda، نويسنده , , Sanjib، نويسنده ,
Pages
11
From page
1919
To page
1929
Abstract
Early detection and diagnosis of faults in industrial machines would reduce the maintenance cost and also increase the overall equipment effectiveness by increasing the availability of the machinery systems. In this paper, a semi-nonparametric approach based on hidden Markov model is introduced for fault detection and diagnosis in synchronous motors. In this approach, after training the hidden Markov model classifiers (parametric stage), two matrices named probabilistic transition frequency profile and average probabilistic emission are computed based on the hidden Markov models for each signature (nonparametric stage) using probabilistic inference. These matrices are later used in forming a similarity scoring function, which is the basis of the classification in this approach. Moreover, a preprocessing method, named squeezing and stretching is proposed which rectifies the difficulty of dealing with various operating speeds in the classification process. Finally, the experimental results are provided and compared. Further investigations are carried out, providing sensitivity analysis on the length of signatures, the number of hidden state values, as well as statistical performance evaluation and comparison with conventional hidden Markov model-based fault diagnosis approach. Results indicate that implementation of the proposed preprocessing, which unifies the signatures from various operating speeds, increases the classification accuracy by nearly 21% and moreover utilization of the proposed semi-nonparametric approach improves the accuracy further by nearly 6%.
Keywords
nonparametric approach , Synchronous motors , Fault diagnosis , Hidden Markov model , Fault detection
Journal title
Astroparticle Physics
Record number
2047906
Link To Document