Title of article :
Combining accuracy and success-rate to improve the performance of eXtended Classifier System (XCS) for data-mining and control applications
Author/Authors :
Shariat Panahi، نويسنده , , M. and Karkhaneh Yousefi، نويسنده , , A. and Khorshidi، نويسنده , , M.، نويسنده ,
Pages :
6
From page :
1930
To page :
1935
Abstract :
The emergence of eXtended Classifier Systems (XCS) raised the bar for Learning Classifier Systems by incorporating the accuracies of the rules in the LCSʹs traditional reinforcement mechanism. However, neither XCS nor its extensions take into account the nature of a classifierʹs experience of attending the action set. We introduce an experience–evaluation mechanism that, once added to the traditional XCS, would assigns to each member of the action set a success rate indicating how effectively the classifier has contributed to the correct responding of the system to the environmentʹs queries. Application of the augmented system (called SRXCS) to several benchmark problems shows that the proposed mechanism enhances XCSʹ classification capability and its rate of convergence at the same time. Application results indicate that SRXCS performs notably better on both pattern association and pattern recognition tasks. The applicability and efficiency of the proposed mechanism is further demonstrated through solving a fairly complex path planning problem for an autonomous mobile robot in a dynamic environment.
Keywords :
Classifier Systems , Rule experience , XCS , Reinforcement policy , Rule elimination
Journal title :
Astroparticle Physics
Record number :
2047911
Link To Document :
بازگشت