Title of article :
Spatio-temporal data classification through multidimensional sequential patterns: Application to crop mapping in complex landscape
Author/Authors :
Pitarch، نويسنده , , Yoann and Ienco، نويسنده , , Dino and Vintrou، نويسنده , , Elodie and Bégué، نويسنده , , Agnès and Laurent، نويسنده , , Anne-Sophie Poncelet، نويسنده , , Pascal and Sala، نويسنده , , Michel and Teisseire، نويسنده , , Maguelonne، نويسنده ,
Pages :
12
From page :
91
To page :
102
Abstract :
The main use of satellite imagery concerns the process of the spectral and spatial dimensions of the data. However, to extract useful information, the temporal dimension also has to be accounted for which increases the complexity of the problem. For this reason, there is a need for suitable data mining techniques for this source of data. In this work, we developed a data mining methodology to extract multidimensional sequential patterns to characterize temporal behaviors. We then used the extracted multidimensional sequences to build a classifier, and show how the patterns help to distinguish between the classes. We evaluated our technique using a real-world dataset containing information about land use in Mali (West Africa) to automatically recognize if an area is cultivated or not.
Keywords :
knowledge discovery , DATA MINING , Land cover , Remote sensing , MODIS images
Journal title :
Astroparticle Physics
Record number :
2048517
Link To Document :
بازگشت