Author/Authors :
Spiecker، نويسنده , , E.، نويسنده ,
Abstract :
A new method for determining the polarity of crystals with sphalerite structure (GaAs, GaSb, InP, etc.) within the transmission electron microscope (TEM) is presented. The method is derived from an established convergent beam electron diffraction (CBED) method (J. Appl. Crystallogr. 15 (1982) 60) and exploits the effects of the dynamical scattering on the contrast of bend contour crossings in conventional TEM images. In contrast to the CBED method, the bend contour method is performed in the image mode of the TEM. The sample can, therefore, be viewed while performing the polarity analysis. Furthermore, in the presence of strong foil bending, the bend contour method has some advantages for practical work. A general contrast rule for the bend contour intersections is stated which allows to readily obtain the crystal polarity by comparing the contrast in experimental images with the prediction of the rule. Exemplarily, the polarity of GaAs in TEM samples prepared for investigation in the two frequently used projections 〈0 0 1〉 and 〈1 1 0〉 is determined. The validity of the rule for the cases studied is confirmed by simulations of the dynamical scattering process. Furthermore, an independent analysis of the crystal polarity by making use of a long-range-ordered (GaIn)P layer grown on top of the GaAs confirms the results obtained with the bend contour method. As an example, the usefulness of the method is demonstrated in an analysis of the α/β-character of misfit dislocations at the interface between the GaAs substrate and the (GaIn)P layer.
Keywords :
Bend contours , CBED , Crystal polarity , Dynamical electron diffraction