Title of article :
Planar quasiperiodic Ising models
Author/Authors :
Repetowicz، نويسنده , , Przemys?aw and Grimm، نويسنده , , Uwe and Schreiber، نويسنده , , Michael، نويسنده ,
Abstract :
We investigate zero-field Ising models on periodic approximants of planar quasiperiodic tilings by means of partition function zeros and high-temperature expansions. These are obtained by employing a determinant expression for the partition function. The partition function zeros in the complex temperature plane yield precise estimates of the critical temperature of the quasiperiodic model. Concerning the critical behaviour, our results are compatible with Onsager universality, in agreement with the Harris–Luck criterion based on scaling arguments.
Keywords :
Quasicrystals , Partition function zeros , phase transition , Critical point properties , Ising model
Journal title :
Astroparticle Physics