Author/Authors :
Suryanarayana، نويسنده , , C and Ivanov، نويسنده , , E and Boldyrev، نويسنده , , V.V، نويسنده ,
Abstract :
Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing, and rewelding of powder particles in a high-energy ball mill, and has now become an established commercial technique to produce oxide dispersion strengthened (ODS) nickel- and iron-based materials. MA is also capable of synthesizing a variety of metastable phases, and in this respect, the capabilities of MA are similar to those of another important non-equilibrium processing technique, viz., rapid solidification processing (RSP). However, the “science” of MA is being investigated only during the past 10 years or so. The technique of mechanochemistry, on the other hand, has had a long history and the materials produced in this way have found a number of technological applications, e.g., in areas such as hydrogen storage materials, heaters, gas absorbers, fertilizers, catalysts, cosmetics, and waste management. The present paper discusses the basic mechanisms of formation of metastable phases (specifically supersaturated solid solutions and amorphous phases) by the technique of MA and these aspects are compared with those of RSP. Additionally, the variety of technological applications of mechanically alloyed products are highlighted.
Keywords :
Supersaturated solid solutions , mechanical alloying , Amorphous phases , Rapid solidification processing , Applications of mechanically alloyed products