Title of article :
Modeling human performance in statistical word segmentation
Author/Authors :
Frank ، نويسنده , , Michael C. and Goldwater، نويسنده , , Sharon and Griffiths، نويسنده , , Thomas L. and Tenenbaum، نويسنده , , Joshua B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
19
From page :
107
To page :
125
Abstract :
The ability to discover groupings in continuous stimuli on the basis of distributional information is present across species and across perceptual modalities. We investigate the nature of the computations underlying this ability using statistical word segmentation experiments in which we vary the length of sentences, the amount of exposure, and the number of words in the languages being learned. Although the results are intuitive from the perspective of a language learner (longer sentences, less training, and a larger language all make learning more difficult), standard computational proposals fail to capture several of these results. We describe how probabilistic models of segmentation can be modified to take into account some notion of memory or resource limitations in order to provide a closer match to human performance.
Keywords :
Word segmentation , computational modeling , Language acquisition , Statistical Learning
Journal title :
Cognition
Serial Year :
2010
Journal title :
Cognition
Record number :
2076966
Link To Document :
بازگشت