Title of article :
Spatial model error analysis using autocorrelation indices
Author/Authors :
Henebry، نويسنده , , Geoffrey M.، نويسنده ,
Pages :
17
From page :
75
To page :
91
Abstract :
No standard techniques yet exist for assessing the predictive performance of models that simulate spatially-explicit processes. Spatial simulation models generate autocorrelation patterns that are a critical aspect of model prediction. These patterns can be quantified using spatial (Moranʹs I) and spatio-temporal (Griffithʹs STI) autocorrelation indices. A method of error analysis for spatial simulation models is demonstrated using autocorrelation indices to distinguish among the effects of parameter uncertainty on a stochastic spatial simulation of seed dispersal. The resulting autocorrelation patterns of state variables display a range of nonlinear, counterintuitive effects. In contrast to techniques proposed for spatial model error analysis (contagion, spatial predictability, adjacency, multiple resolution procedure, fractal dimension, interface), autocorrelation indices can be used with interval-scaled data and have well-defined sampling distributions that enable significance testing.
Keywords :
autocorrelation , Error analysis , spatial patterns , uncertainty analysis
Journal title :
Astroparticle Physics
Record number :
2079901
Link To Document :
بازگشت