Author/Authors :
Jia، نويسنده , , Haifeng and Zhang، نويسنده , , Yansong and Guo، نويسنده , , Yu، نويسنده ,
Abstract :
An ecodynamic model that can simulate four phytoplankton species has been developed to deal with the unique characteristics of urban river systems which has manmade river profile, flow controlled by gates, severe eutrophication status, and fragile aquatic ecosystem. The ecodynamic model was developed referencing two typical models: the water quality simulation model WASP and ecological model CAEDYM. The model can simulate 11 state variables: dissolved oxygen, carbonaceous biochemical oxygen demand, ammonia nitrogen, nitrate nitrogen, organic nitrogen, inorganic phosphorus, organic phosphorus and four phytoplankton species with zooplankton as a boundary condition. The ecodynamic model was applied to Sihai section of the Beijing urban river system, where serious algal blooms broke out in recent years. The dominant phytoplankton species are Cyanophyta, Chlorophyta, Bacillariophyta, and Cryptophyta. Site-specific data on geometry, meteorology, pollution sources, and existing ecosystem parameters were collected and used for model calibration and verification The model results mimic observed trends of water quality and phytoplankton species succession and can be used for forecasting algal blooms as well as assessment of river management measures.
Keywords :
Multi-species algae , Ecodynamic model , Beijing urban river , algal blooms