Title of article
DFT calculations of structures, 13C NMR chemical shifts and Raman RBM mode of simple models of ultra small diameter (4,0) zigzag hydroxylated single wall carbon nanotubes
Author/Authors
Kupka، نويسنده , , Teobald and Stach?w، نويسنده , , Micha? and Che?mecka، نويسنده , , El?bieta and Pasterny، نويسنده , , Karol and Stobi?ski، نويسنده , , Leszek، نويسنده ,
Issue Information
دوماهنامه با شماره پیاپی سال 2012
Pages
11
From page
573
To page
583
Abstract
Selected acenes, cyclic acenes and model zigzag (4,0) single wall carbon nanotubes (SWCNTs) with one hydroxylic group at the open end were fully optimized at the B3LYP/6-31G* level of theory. The impact of molecule size on the B3LYP/pcS-2 calculated 13C NMR chemical shifts was studied to characterize pristine and tip-monofunctionalized ultra narrow SWCNTs. The harmonic frequency of Raman radial breathing mode (RBM) was determined for monohydroxylated cyclic acenes and correlated with their diameter. A regular convergence of selected CC bond lengths, RBM frequency and carbon chemical shifts upon increasing the size of the systems was observed and fitted toward very large systems with two-parameter mathematical formula. The observed values of selected structural, Raman and 13C NMR chemical shifts in the studied models point out toward a feasibility of NMR technique as a tool for characterization of pristine and OH functionalized SWCNT materials.
Keywords
Acenes , 0) SWCNT , Model zigzag (4 , OH functionalization , Raman RBM mode , NMR , DFT
Journal title
Synthetic Metals
Serial Year
2012
Journal title
Synthetic Metals
Record number
2088900
Link To Document