• Title of article

    Patterned carbon nanotubes as a new three-dimensional scaffold for mesenchymal stem cells

  • Author/Authors

    Gulay and Bitirim، نويسنده , , Verda Ceylan and Kucukayan-Dogu، نويسنده , , Gokce and Bengu، نويسنده , , Erman and Akcali، نويسنده , , Kamil Can، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2013
  • Pages
    7
  • From page
    3054
  • To page
    3060
  • Abstract
    We investigated the cellular adhesive features of mesenchymal stem cells (MSC) on non-coated and collagen coated patterned and vertically aligned carbon nanotube (CNT) structures mimicking the natural extra cellular matrix (ECM). Patterning was achieved using the elasto-capillary induced by water treatment on the CNT arrays. After confirmation with specific markers both at transcript and protein levels, MSCs from different passages were seeded on either collagen coated or non-coated patterned CNTs. Adhesion and growth of MSCs on the patterned CNT arrays were examined using scanning electron microscopy image analysis and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) assays. The highest MSC count was observed on the non-coated patterned CNTs at passage zero, while decreasing numbers of MSCs were found at the later passages. Similarly, MTT assay results also revealed a decrease in the viability of the MSCs for the later passages. Overall, the cell count and viability experiments indicated that MSCs were able to better attach to non-coated patterned CNTs compared to those coated with collagen. Therefore, the patterned CNT surfaces can be potentially used as a scaffold mimicking the ECM environment for MSC growth which presents an alternative approach to MSC-based transplantation therapy applications.
  • Keywords
    Viability , extra cellular matrix , patterning , Vertically aligned carbon nanotube , stem cell , Collagen
  • Journal title
    Materials Science and Engineering C
  • Serial Year
    2013
  • Journal title
    Materials Science and Engineering C
  • Record number

    2103228