Title of article
Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique
Author/Authors
Catauro، نويسنده , , M. and Papale، نويسنده , , F. and Bollino، نويسنده , , F. and Gallicchio، نويسنده , , M. and Pacifico، نويسنده , , S.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2014
Pages
7
From page
253
To page
259
Abstract
The objective of the following study has been the synthesis via sol–gel and the characterization of novel organic–inorganic hybrid materials to be used in biomedical field. The prepared materials consist of an inorganic zirconia matrix containing as organic component the polyethylene glycol (PEG), a water-soluble polymer used in medical and pharmaceutical fields.
s hybrids have been synthesized changing the molar ratio between the organic and inorganic parts. Fourier transform spectroscopy suggests that the structure of the interpenetrating network is realized by hydrogen bonds between the Zr-OH group in the sol–gel intermediate species and both the terminal alcoholic group and ethereal oxygen atoms in the repeating units of polymer
orphous nature of the gels has been ascertained by X-ray diffraction analysis. The morphology observation has been carried out by using the Scanning Electron Microscope and has confirmed that the obtained materials are nanostructurated hybrids. The bioactivity of the synthesized system has been shown by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating the human blood plasma. The potential biocompatibility of hybrids has been assessed as performing indirect MTT cytotoxicity assay towards 3T3 cell line at 24, 48, and 72 h exposure times.
Keywords
Biocompatibility , PEG , Bioactivity , Sol–gel , Organic/Inorganic Hybrid
Journal title
Materials Science and Engineering C
Serial Year
2014
Journal title
Materials Science and Engineering C
Record number
2104496
Link To Document