Title of article :
Water activity affects heat resistance of microorganisms in food powders
Author/Authors :
Laroche، نويسنده , , C. and Fine، نويسنده , , F. and Gervais، نويسنده , , P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
To study the factors and mechanisms involved in microorganismsʹ death or resistance to temperature in low-water-activity environments, a previous work dealt with the viability of dried microorganisms immobilized in thin-layer on glass beads. This work is intended to check the efficiency of a rapid heating–cooling treatment to destroy microorganisms that were dried after mixing with wheat flour or skim milk. The thermoresistance of the yeast Saccharomyces cerevisiae and the bacterium Lactobacillus plantarum were studied. Heat stress was applied at two temperatures (150 or 200 °C) for treatments of one of four durations (5, 10, 20, or 30 s) and at seven levels of initial water activity (aw) in the range 0.10 to 0.70. This new treatment achieved a microbial destruction of eight log reductions. A specific initial water activity was defined for each strain at which it was most resistant to heat treatments. On wheat flour, this initial aw value was in the range 0.30–0.50, with maximal viability value at aw=0.35 for L. plantarum, whatever the temperature studied, and 0.40 for S. cerevisiae. For skim milk, a variation in microbial viability was observed, with optimal resistance in the range 0.30–0.50 for S. cerevisiae and 0.20–0.50 for L. plantarum, with minimal destruction at aw=0.30 whatever the heating temperature is.
Keywords :
HTST process , water activity , Heat , Vegetative cells
Journal title :
International Journal of Food Microbiology
Journal title :
International Journal of Food Microbiology