Title of article :
NMR 13C-isotopic enrichment experiments to study carbon-partitioning into organic solutes in the red alga Grateloupia doryphora
Author/Authors :
Christelle Simon-Colin، نويسنده , , Christelle and Kervarec، نويسنده , , Nelly and Pichon، نويسنده , , Roger and Deslandes، نويسنده , , Eric، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
6
From page :
21
To page :
26
Abstract :
The red alga Grateloupia doryphora Montagne (Howe) (Cryptonemiales, Halymeniaceae) was used as a model to investigate the effects of changes in seawater salinity on the intracellular low-molecular-weight organic compounds. Carbon-partitioning into major organic solutes was followed by 13C nuclear magnetic resonance (NMR) spectroscopy on living algae incubated in NaH13CO3-enriched seawater, and by high resolution 1H and 13C NMR experiments performed on 13C-enriched algal extracts. NMR and high performance liquid chromatography (HPLC) analyses both demonstrated that floridoside level was the most affected by changes in salinity: it rose under the hypersaline treatment and decreased under hyposaline one. Moreover, at low salinity, the high labeling of floridoside (45.3% 13C-enrichment for C1) together with its low concentrations both provided evidence of great increase in the de novo biosynthesis and turnover rate. Our experiments also demonstrated a high incorporation of photosynthetic carbon into amino acids, especially glutamate, under hypoosmotic conditions. On the other hand, isethionic acid and N-methyl-methionine sulfoxide were only partly labeled, which indicates they do not directly derive from carbon photoassimilation. In algae exposed to high salinity, elevated concentrations of floridoside coupled to a low labeling (9.4%) were observed. These results suggest that hyperosmotic conditions stimulated floridoside biosynthesis from endogen storage products rather than from carbon assimilation through photosynthesis.
Keywords :
Carbon partitioning , floridoside , Grateloupia doryphora , isotopic enrichment , Organic solutes , In vivo 13C NMR , Salinity stress
Journal title :
Plant Physiology and Biochemistry
Serial Year :
2004
Journal title :
Plant Physiology and Biochemistry
Record number :
2120854
Link To Document :
بازگشت