Title of article :
Multi-objective parameter estimation of induction motor using particle swarm optimization
Author/Authors :
Sakthivel، نويسنده , , V.P. and Bhuvaneswari، نويسنده , , R. and Subramanian، نويسنده , , S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
11
From page :
302
To page :
312
Abstract :
In order to simplify the offline parameter estimation of induction motor, a method based on optimization using a particle swarm optimization (PSO) technique is presented. Three different induction motor models such as approximate, exact and deep bar circuit models are considered. The parameter estimation methodology describes a method for estimating the steady-state equivalent circuit parameters from the motor performance characteristics, which is normally available from the manufacturer data or from tests. The optimization problem is formulated as multi-objective function to minimize the error between the estimated and the manufacturer data. The sensitivity analysis is also performed to identify parameters, which have the most impact on motor performance. The feasibility of the proposed method is demonstrated for two different motors and it is compared with the genetic algorithm and the classical parameter estimation method. Simulation results show that the proposed PSO method was indeed capable of estimating the parameters over a wide operating range of the motor.
Keywords :
Induction motor parameter estimation , Genetic algorithms , particle swarm optimization , Sensitivity analysis , Deep bar circuit model
Journal title :
Engineering Applications of Artificial Intelligence
Serial Year :
2010
Journal title :
Engineering Applications of Artificial Intelligence
Record number :
2125248
Link To Document :
بازگشت