Title of article :
TSK fuzzy modeling for tool wear condition in turning processes: An experimental study
Author/Authors :
Ren، نويسنده , , Qun and Balazinski، نويسنده , , Marek and Baron، نويسنده , , Luc and Jemielniak، نويسنده , , Krzysztof، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
6
From page :
260
To page :
265
Abstract :
This paper presents an experimental study for turning process in machining by using Takagi–Sugeno–Kang (TSK) fuzzy modeling to accomplish the integration of multi-sensor information and tool wear information. It generates fuzzy rules directly from the input–output data acquired from sensors, and provides high accuracy and high reliability of the tool wear prediction over a wide range of cutting conditions. The experimental results show its effectiveness and satisfactory comparisons relative to other artificial intelligence methods.
Keywords :
TSK fuzzy modeling , Tool wear condition , Subtractive clustering
Journal title :
Engineering Applications of Artificial Intelligence
Serial Year :
2011
Journal title :
Engineering Applications of Artificial Intelligence
Record number :
2125404
Link To Document :
بازگشت