Title of article :
Probabilistic prediction of tunnel geology using a Hybrid Neural-HMM
Author/Authors :
Leu، نويسنده , , Sou-Sen and Adi، نويسنده , , Tri Joko Wahyu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
Uncertain ground conditions represent the primary source of risk in underground tunnel construction. However, this problem can be solved by developing an accurate, probabilistic description of the geology. This paper presents a general model for probability based determination of tunnel geology that can be used as a basis for developing more effective decision support systems for tunneling design and construction. The proposed model is based on a Hidden Markov Model (HMM) and a neural network (NN). An approximate inference technique – a Particle Filter (PF) Algorithm – is used to simulate the geological parameters. This model overcomes the deficiencies of existing models by readily incorporating all available geologic information and updating geologic predictions based on observations given by the neural network. In order to validate the proposed model, the “Drainage Water Tunnel Project” at Zhong-He, Taipei, Taiwan was used. The results showed that the Neural-HMM model provides high accuracy in geological prediction.
Keywords :
neural network , Hidden Markov model , Tunneling , particle filter , Geologic prediction
Journal title :
Engineering Applications of Artificial Intelligence
Journal title :
Engineering Applications of Artificial Intelligence