Title of article
Confidence estimation of feedback information for logicdiagnosis
Author/Authors
Duong، نويسنده , , Quoc-Bao and Zamai، نويسنده , , Eric and Tran-Dinh، نويسنده , , Khoi-Quoc، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2013
Pages
13
From page
1149
To page
1161
Abstract
This paper proposes an estimation method for the confidence level of feedback information (CLFI), namely the confidence level of reported information in computer integrated manufacturing (CIM) architecture for logic diagnosis. This confidence estimation provides a diagnosis module with precise reported information to quickly identify the origin of equipment failure. We studied the factors affecting CLFI, such as measurement system reliability, production context, position of sensors in the acquisition chains, type of products, reference metrology, preventive maintenance and corrective maintenance based on historical data and feedback information generated by production equipments. We introduced the new ‘CLFI’ concept based on the Dynamic Bayesian Network approach and Tree Augmented Naïve Bayes model. Our contribution includes an on-line confidence computation module for production equipment data, and an algorithm to compute CLFI. We suggest it to be applied to the semiconductor manufacturing industry.
Keywords
Confidence level , semiconductor manufacturing , Markov chain , Bayesian networks , diagnosis
Journal title
Engineering Applications of Artificial Intelligence
Serial Year
2013
Journal title
Engineering Applications of Artificial Intelligence
Record number
2125890
Link To Document