• Title of article

    Combining learning in model space fault diagnosis with data validation/reconstruction: Application to the Barcelona water network

  • Author/Authors

    Quevedo، نويسنده , , J. and Chen، نويسنده , , H. and Cuguerَ، نويسنده , , M.ہ. and Tino، نويسنده , , P. and Puig، نويسنده , , V. and Garcيa، نويسنده , , D. and Sarrate، نويسنده , , R. and Yao، نويسنده , , X.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2014
  • Pages
    12
  • From page
    18
  • To page
    29
  • Abstract
    In this paper, an integrated data validation/reconstruction and fault diagnosis approach is proposed for critical infrastructure systems. The proposed methodology is implemented in a two-stage approach. In the first stage, sensor communication faults are detected and corrected, in order to facilitate a reliable dataset to perform system fault diagnosis in the second stage. On the one hand, sensor validation and reconstruction are based on the combined use of spatial and time series models. Spatial models take advantage of the (mass-balance) relation between different variables in the system, whilst time series models take advantage of the temporal redundancy of the measured variables by means of Holt-Winters time series models. On the other hand, fault diagnosis is based on the learning-in-model-space approach that is implemented by fitting a series of models using a series of signal segments selected with a sliding window. In this way, each signal segment can be represented by one model. To rigorously measure the ‘distance’ between models, the distance in the model space is defined. The deterministic reservoir computing approach is used to approximate a model with the input–output dynamics that exploits spatial–temporal correlations existing in the original data. Finally, the proposed approach is successfully applied to the Barcelona water network.
  • Keywords
    Learning in model space , Sensor data validation/reconstruction , Fault diagnosis , Time series , Reservoir computing
  • Journal title
    Engineering Applications of Artificial Intelligence
  • Serial Year
    2014
  • Journal title
    Engineering Applications of Artificial Intelligence
  • Record number

    2126138