Title of article
Spatio-temporal data classification through multidimensional sequential patterns: Application to crop mapping in complex landscape
Author/Authors
Pitarch، نويسنده , , Yoann and Ienco، نويسنده , , Dino and Vintrou، نويسنده , , Elodie and Bégué، نويسنده , , Agnès and Laurent، نويسنده , , Anne-Sophie Poncelet، نويسنده , , Pascal and Sala، نويسنده , , Michel and Teisseire، نويسنده , , Maguelonne، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2015
Pages
12
From page
91
To page
102
Abstract
The main use of satellite imagery concerns the process of the spectral and spatial dimensions of the data. However, to extract useful information, the temporal dimension also has to be accounted for which increases the complexity of the problem. For this reason, there is a need for suitable data mining techniques for this source of data. In this work, we developed a data mining methodology to extract multidimensional sequential patterns to characterize temporal behaviors. We then used the extracted multidimensional sequences to build a classifier, and show how the patterns help to distinguish between the classes. We evaluated our technique using a real-world dataset containing information about land use in Mali (West Africa) to automatically recognize if an area is cultivated or not.
Keywords
DATA MINING , MODIS images , Land cover , Remote sensing , knowledge discovery
Journal title
Engineering Applications of Artificial Intelligence
Serial Year
2015
Journal title
Engineering Applications of Artificial Intelligence
Record number
2126334
Link To Document