Title of article :
Optimal inference for instrumental variables regression with non-Gaussian errors
Author/Authors :
Cattaneo، نويسنده , , Matias D. and Crump، نويسنده , , Richard K. and Jansson، نويسنده , , Michael، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2012
Abstract :
This paper is concerned with inference on the coefficient on the endogenous regressor in a linear instrumental variables model with a single endogenous regressor, nonrandom exogenous regressors and instruments, and i.i.d. errors whose distribution is unknown. It is shown that under mild smoothness conditions on the error distribution it is possible to develop tests which are “nearly” efficient in the sense of Andrews et al. (2006) when identification is weak and consistent and asymptotically optimal when identification is strong. In addition, an estimator is presented which can be used in the usual way to construct valid (indeed, optimal) confidence intervals when identification is strong. The estimator is of the two stage least squares variety and is asymptotically efficient under strong identification whether or not the errors are normal.
Journal title :
Journal of Econometrics
Journal title :
Journal of Econometrics