Title of article :
The conditional autoregressive Wishart model for multivariate stock market volatility
Author/Authors :
Golosnoy، نويسنده , , Vasyl and Gribisch، نويسنده , , Bastian and Liesenfeld، نويسنده , , Roman، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2012
Abstract :
We propose a Conditional Autoregressive Wishart (CAW) model for the analysis of realized covariance matrices of asset returns. Our model assumes an autoregressive moving average structure for the scale matrix of the Wishart distribution. It accounts for positive definiteness of covariance matrices without imposing parametric restrictions, and can be estimated by Maximum Likelihood. We also propose extensions of the CAW model obtained by including a Mixed Data Sampling (MIDAS) component and Heterogeneous Autoregressive (HAR) dynamics for long-run fluctuations. The CAW models are applied to realized variances and covariances for five New York Stock Exchange stocks.
Keywords :
Component volatility models , covariance matrix , Mixed data sampling , Observation-driven models , Realized volatility
Journal title :
Journal of Econometrics
Journal title :
Journal of Econometrics