Title of article :
Sieve estimation of panel data models with cross section dependence
Author/Authors :
Su، نويسنده , , Liangjun and Jin، نويسنده , , Sainan، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2012
Pages :
14
From page :
34
To page :
47
Abstract :
In this paper we consider the problem of estimating semiparametric panel data models with cross section dependence, where the individual-specific regressors enter the model nonparametrically whereas the common factors enter the model linearly. We consider both heterogeneous and homogeneous regression relationships when both the time and cross-section dimensions are large. We propose sieve estimators for the nonparametric regression functions by extending Pesaran’s (2006) common correlated effect (CCE) estimator to our semiparametric framework. Asymptotic normal distributions for the proposed estimators are derived and asymptotic variance estimators are provided. Monte Carlo simulations indicate that our estimators perform well in finite samples.
Keywords :
Cross-Section Dependence , Common factor , Heterogeneous regression , Panel data , Sieve estimation
Journal title :
Journal of Econometrics
Serial Year :
2012
Journal title :
Journal of Econometrics
Record number :
2129048
Link To Document :
بازگشت